ESPnet源码解析(二)asr_train.py

这部分的代码是声学模型训练的代码的第一部分,以前看的,我代码能力比较薄弱吧,反正只能慢慢改了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#!/usr/bin/env python3
# encoding: utf-8

# Copyright 2017 Tomoki Hayashi (Nagoya University)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Automatic speech recognition model training script."""

import logging
import os
import random
import subprocess
import sys

import configargparse
import numpy as np

from espnet import __version__
from espnet.utils.cli_utils import strtobool
from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES

# NOTE: you need this func to generate our sphinx doc
def get_parser(parser=None, required=True):
    """Get default arguments."""
    if parser is None:
        parser = configargparse.ArgumentParser(
            description="Train an automatic speech recognition (ASR) model on one CPU, "
            "one or multiple GPUs",
            config_file_parser_class=configargparse.YAMLConfigFileParser,
            formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
        )
    # general configuration
    parser.add("--config", is_config_file=True, help="config file path")
#(config配置文件)
    parser.add(
        "--config2",
        is_config_file=True,
        help="second config file path that overwrites the settings in `--config`.",
    )
    parser.add(
        "--config3",
        is_config_file=True,
        help="third config file path that overwrites the settings in "
        "`--config` and `--config2`.",
    )

    parser.add_argument(
        "--ngpu",
        default=None,
        type=int,
        help="Number of GPUs. If not given, use all visible devices",
    )
#gpu使用数量
    parser.add_argument(
        "--train-dtype",
        default="float32",
        choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"],
        help="Data type for training (only pytorch backend). "
        "O0,O1,.. flags require apex. "
        "See https://nvidia.github.io/apex/amp.html#opt-levels",
    )
#训练数据类型
    parser.add_argument(
        "--backend",
        default="chainer",
        type=str,
        choices=["chainer", "pytorch"],
        help="Backend library",
    )
#指定训练框架,pytorch或者chainer
    parser.add_argument(
        "--outdir", type=str, required=required, help="Output directory"
    )
#输出目录的文件夹
    parser.add_argument("--debugmode", default=1, type=int, help="Debugmode")
#debugmode的数量
    parser.add_argument("--dict", required=required, help="Dictionary")
#字典
    parser.add_argument("--seed", default=1, type=int, help="Random seed")
#随机速度(不知道什么意思)
    parser.add_argument("--debugdir", type=str, help="Output directory for debugging")
#debug的输出目录
    parser.add_argument(
        "--resume",
        "-r",
        default="",
        nargs="?",
        help="Resume the training from snapshot",
    )
#从指定的已训练好的模型继续训练
    parser.add_argument(
        "--minibatches",
        "-N",
        type=int,
        default="-1",
        help="Process only N minibatches (for debug)",
    )
#小批量训练,详细可以百度
    parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option")
#日志选项
    parser.add_argument(
        "--tensorboard-dir",
        default=None,
        type=str,
        nargs="?",
        help="Tensorboard log dir path",
    )
#Tensorboard日志目录存放路径,可以学一学
    parser.add_argument(
        "--report-interval-iters",
        default=100,
        type=int,
        help="Report interval iterations",
    )
#迭代多少次输出一次,默认100
    parser.add_argument(
        "--save-interval-iters",
        default=0,
        type=int,
        help="Save snapshot interval iterations",
    )
#保存模型训练的初始迭代
    # task related
    parser.add_argument(
        "--train-json",
        type=str,
        default=None,
        help="Filename of train label data (json)",
    )
#训练数据类型-jaon
    parser.add_argument(
        "--valid-json",
        type=str,
        default=None,
        help="Filename of validation label data (json)",
    )
#验证集数据类型-jaon
    # network architecture
    parser.add_argument(
        "--model-module",
        type=str,
        default=None,
        help="model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)",
    )
#模型定义模块,用pytorch的还是chainer的
    # encoder
    parser.add_argument(
        "--num-encs", default=1, type=int, help="Number of encoders in the model."
    )
#模型的编码器数量
    # loss related
    parser.add_argument(
        "--ctc_type",
        default="warpctc",
        type=str,
        choices=["builtin", "warpctc", "gtnctc", "cudnnctc"],
        help="Type of CTC implementation to calculate loss.",
    )
#计算CTC的损失是用什么模型实现的,我用的是warpctc
    parser.add_argument(
        "--mtlalpha",
        default=0.5,
        type=float,
        help="Multitask learning coefficient, "
        "alpha: alpha*ctc_loss + (1-alpha)*att_loss ",
    )
#多任务学习系数,公式为上面那个
    parser.add_argument(
        "--lsm-weight", default=0.0, type=float, help="Label smoothing weight"
    )
#标签平滑权重
    # recognition options to compute CER/WER
    parser.add_argument(
        "--report-cer",
        default=False,
        action="store_true",
        help="Compute CER on development set",
    )
#计算验证集的字错误
    parser.add_argument(
        "--report-wer",
        default=False,
        action="store_true",
        help="Compute WER on development set",
    )
#计算验证集的词错误率
    parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
#输出几个最好的假设,默认为1
    parser.add_argument("--beam-size", type=int, default=4, help="Beam size")
#beam search默认设为4
    parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty")
#插入惩罚参数,默认为0
    parser.add_argument(
        "--maxlenratio",
        default=0.0,
        type=float,
        help="""Input length ratio to obtain max output length.
                        If maxlenratio=0.0 (default), it uses a end-detect function
                        to automatically find maximum hypothesis lengths""",
#输出目标句子最长和句子的最大比,详细看论文混合CTC/attention
    )
    parser.add_argument(
        "--minlenratio",
        default=0.0,
        type=float,
        help="Input length ratio to obtain min output length",
    )
#同上
    parser.add_argument(
        "--ctc-weight", default=0.3, type=float, help="CTC weight in joint decoding"
    )
#CTC在联合解码中的权重占比,默认为0.3
    parser.add_argument(
        "--rnnlm", type=str, default=None, help="RNNLM model file to read"
    )
#RNN语言模型要读取的文件
    parser.add_argument(
        "--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read"
    )
#RNN语言模型默认配置
    parser.add_argument("--lm-weight", default=0.1, type=float, help="RNNLM weight.")
#RNN语言模型在解码中的占比权重
    parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol")
#空格符号用<space>代替
    parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol")
#空白符号用<blank>符号代替
    # minibatch related
    parser.add_argument(
        "--sortagrad",
        default=0,
        type=int,
        nargs="?",
        help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs",
    )
#minibatch相关,多少次epochs遍历完一次
    parser.add_argument(
        "--batch-count",
        default="auto",
        choices=BATCH_COUNT_CHOICES,
        help="How to count batch_size. "
        "The default (auto) will find how to count by args.",
    )
#batchsize大小
    parser.add_argument(
        "--batch-size",
        "--batch-seqs",
        "-b",
        default=0,
        type=int,
        help="Maximum seqs in a minibatch (0 to disable)",
    )
#
    parser.add_argument(
        "--batch-bins",
        default=0,
        type=int,
        help="Maximum bins in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-in",
        default=0,
        type=int,
        help="Maximum input frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-out",
        default=0,
        type=int,
        help="Maximum output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--batch-frames-inout",
        default=0,
        type=int,
        help="Maximum input+output frames in a minibatch (0 to disable)",
    )
    parser.add_argument(
        "--maxlen-in",
        "--batch-seq-maxlen-in",
        default=800,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the input sequence length > ML.",
    )
    parser.add_argument(
        "--maxlen-out",
        "--batch-seq-maxlen-out",
        default=150,
        type=int,
        metavar="ML",
        help="When --batch-count=seq, "
        "batch size is reduced if the output sequence length > ML",
    )
    parser.add_argument(
        "--n-iter-processes",
        default=0,
        type=int,
        help="Number of processes of iterator",
    )
    parser.add_argument(
        "--preprocess-conf",
        type=str,
        default=None,
        nargs="?",
        help="The configuration file for the pre-processing",
    )
    # optimization related
    parser.add_argument(
        "--opt",
        default="adadelta",
        type=str,
        choices=["adadelta", "adam", "noam"],
        help="Optimizer",
    )
#优化模型,"adadelta", "adam", "noam"三个选项,默认adadelta
    parser.add_argument(
        "--accum-grad", default=1, type=int, help="Number of gradient accumuration"
    )
#梯度累计次数
    parser.add_argument(
        "--eps", default=1e-8, type=float, help="Epsilon constant for optimizer"
    )
#优化器的epsilon系数,因为有的鬼地方防止除0,比如BN
    parser.add_argument(
        "--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon"
    )
#优化器epsilon衰减比率
    parser.add_argument(
        "--weight-decay", default=0.0, type=float, help="Weight decay ratio"
    )
#权重衰减比率
    parser.add_argument(
        "--criterion",
        default="acc",
        type=str,
        choices=["loss", "loss_eps_decay_only", "acc"],
        help="Criterion to perform epsilon decay",
    )
#标准epsilon衰减
    parser.add_argument(
        "--threshold", default=1e-4, type=float, help="Threshold to stop iteration"
    )
#停止迭代的阈值
    parser.add_argument(
        "--epochs", "-e", default=30, type=int, help="Maximum number of epochs"
    )
#epochs次数
    parser.add_argument(
        "--early-stop-criterion",
        default="validation/main/acc",
        type=str,
        nargs="?",
        help="Value to monitor to trigger an early stopping of the training",
    )
#监控触发停止训练的值
    parser.add_argument(
        "--patience",
        default=3,
        type=int,
        nargs="?",
        help="Number of epochs to wait without improvement "
        "before stopping the training",
    )
#没有再优化模型的epochs的数量,然后提前结束训练
    parser.add_argument(
        "--grad-clip", default=5, type=float, help="Gradient norm threshold to clip"
    )

    parser.add_argument(
        "--num-save-attention",
        default=3,
        type=int,
        help="Number of samples of attention to be saved",
    )
#保留注意力样本的数量,可以看result
    parser.add_argument(
        "--num-save-ctc",
        default=3,
        type=int,
        help="Number of samples of CTC probability to be saved",
    )
#要保留ctc概率的数量,也可以看result
    parser.add_argument(
        "--grad-noise",
        type=strtobool,
        default=False,
        help="The flag to switch to use noise injection to gradients during training",
    )
#梯度时加噪
    # asr_mix related
    parser.add_argument(
        "--num-spkrs",
        default=1,
        type=int,
        choices=[1, 2],
        help="Number of speakers in the speech.",
    )
#语音中说话人的数量
    # decoder related
    parser.add_argument(
        "--context-residual",
        default=False,
        type=strtobool,
        nargs="?",
        help="The flag to switch to use context vector residual in the decoder network",
    )
#使用上下文残差
    # finetuning related
    parser.add_argument(
        "--enc-init",
        default=None,
        type=str,
        help="Pre-trained ASR model to initialize encoder.",
    )
#预训练语音识别模型的初始化编码器
    parser.add_argument(
        "--enc-init-mods",
        default="enc.enc.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of encoder modules to initialize, separated by a comma.",
    )
#要初始化的编码器模块
    parser.add_argument(
        "--dec-init",
        default=None,
        type=str,
        help="Pre-trained ASR, MT or LM model to initialize decoder.",
    )
#预训练语音识别机器翻译和语言模型初始化编码器
    parser.add_argument(
        "--dec-init-mods",
        default="att.,dec.",
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of decoder modules to initialize, separated by a comma.",
    )
#初始化编码器模块
    parser.add_argument(
        "--freeze-mods",
        default=None,
        type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
        help="List of modules to freeze, separated by a comma.",
    )
    # front end related
    parser.add_argument(
        "--use-frontend",
        type=strtobool,
        default=False,
        help="The flag to switch to use frontend system.",
    )
#这个标志意味着使用前端系统
    # WPE related
    parser.add_argument(
        "--use-wpe",
        type=strtobool,
        default=False,
        help="Apply Weighted Prediction Error",
    )
#应用权重预测误差,作用是去混响
    parser.add_argument(
        "--wtype",
        default="blstmp",
        type=str,
        choices=[
            "lstm",
            "blstm",
            "lstmp",
            "blstmp",
            "vgglstmp",
            "vggblstmp",
            "vgglstm",
            "vggblstm",
            "gru",
            "bgru",
            "grup",
            "bgrup",
            "vgggrup",
            "vggbgrup",
            "vgggru",
            "vggbgru",
        ],
        help="Type of encoder network architecture "
        "of the mask estimator for WPE. "
        "",
    )
#编码网络类别类别
    parser.add_argument("--wlayers", type=int, default=2, help="")#层数
    parser.add_argument("--wunits", type=int, default=300, help="")#神经元个数
    parser.add_argument("--wprojs", type=int, default=300, help="")
    parser.add_argument("--wdropout-rate", type=float, default=0.0, help="")
    parser.add_argument("--wpe-taps", type=int, default=5, help="")
    parser.add_argument("--wpe-delay", type=int, default=3, help="")
    parser.add_argument(
        "--use-dnn-mask-for-wpe",
        type=strtobool,
        default=False,
        help="Use DNN to estimate the power spectrogram. "
        "This option is experimental.",
    )
    # Beamformer related
    parser.add_argument("--use-beamformer", type=strtobool, default=True, help="")
    parser.add_argument(
        "--btype",
        default="blstmp",
        type=str,
        choices=[
            "lstm",
            "blstm",
            "lstmp",
            "blstmp",
            "vgglstmp",
            "vggblstmp",
            "vgglstm",
            "vggblstm",
            "gru",
            "bgru",
            "grup",
            "bgrup",
            "vgggrup",
            "vggbgrup",
            "vgggru",
            "vggbgru",
        ],
        help="Type of encoder network architecture "
        "of the mask estimator for Beamformer.",
    )
    parser.add_argument("--blayers", type=int, default=2, help="")
    parser.add_argument("--bunits", type=int, default=300, help="")
    parser.add_argument("--bprojs", type=int, default=300, help="")
    parser.add_argument("--badim", type=int, default=320, help="")
    parser.add_argument(
        "--bnmask",
        type=int,
        default=2,
        help="Number of beamforming masks, " "default is 2 for [speech, noise].",
    )
    parser.add_argument(
        "--ref-channel",
        type=int,
        default=-1,
        help="The reference channel used for beamformer. "
        "By default, the channel is estimated by DNN.",
    )
    parser.add_argument("--bdropout-rate", type=float, default=0.0, help="")
    # Feature transform: Normalization
    parser.add_argument(
        "--stats-file",
        type=str,
        default=None,
        help="The stats file for the feature normalization",
    )
    parser.add_argument(
        "--apply-uttmvn",
        type=strtobool,
        default=True,
        help="Apply utterance level mean " "variance normalization.",
    )
    parser.add_argument("--uttmvn-norm-means", type=strtobool, default=True, help="")
    parser.add_argument("--uttmvn-norm-vars", type=strtobool, default=False, help="")
    # Feature transform: Fbank
    parser.add_argument(
        "--fbank-fs",
        type=int,
        default=16000,
        help="The sample frequency used for " "the mel-fbank creation.",
    )
    parser.add_argument(
        "--n-mels", type=int, default=80, help="The number of mel-frequency bins."
    )
    parser.add_argument("--fbank-fmin", type=float, default=0.0, help="")
    parser.add_argument("--fbank-fmax", type=float, default=None, help="")
    return parser

def main(cmd_args):
    """Run the main training function."""
    parser = get_parser()
#获取参数
    args, _ = parser.parse_known_args(cmd_args)
#多次传参
    if args.backend == "chainer" and args.train_dtype != "float32":
        raise NotImplementedError(
            f"chainer backend does not support --train-dtype {args.train_dtype}."
            "Use --dtype float32."
        )
#如果选择chainer框架且训练类型不是float32则报错
    if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"):
        raise ValueError(
            f"--train-dtype {args.train_dtype} does not support the CPU backend."
        )
#如果使用CPU训练且训练类型为O0-O3等报错
    from espnet.utils.dynamic_import import dynamic_import
#从espnet_utils_dynamic_import.py下引用方法dynamic_import,作用动态引入模块
    if args.model_module is None:
        if args.num_spkrs == 1:
            model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E"
        else:
            model_module = "espnet.nets." + args.backend + "_backend.e2e_asr_mix:E2E"
    else:
        model_module = args.model_module
    model_class = dynamic_import(model_module)
#代码注释见https://shimo.im/docs/9030MPWRzYUNZrqw,这里是指e2e_asr_transformer.py中的E2E类
    model_class.add_arguments(parser)
#将parser参数传给模型,详情见https://shimo.im/docs/vVAXVoDOYNFVVjqm

    args = parser.parse_args(cmd_args)
    args.model_module = model_module
    if "chainer_backend" in args.model_module:
        args.backend = "chainer"
    if "pytorch_backend" in args.model_module:
        args.backend = "pytorch"
#指定框架,这里用的是pytorch

    # add version info in args
    args.version = __version__
#添加版本信息
    # logging info
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
    else:
        logging.basicConfig(
            level=logging.WARN,
            format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
        )
        logging.warning("Skip DEBUG/INFO messages")

    # If --ngpu is not given,
    #   1. if CUDA_VISIBLE_DEVICES is set, all visible devices
    #   2. if nvidia-smi exists, use all devices
    #   3. else ngpu=0
    if args.ngpu is None:
        cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
#获取能用的GPU
        if cvd is not None:
            ngpu = len(cvd.split(","))
#如果cvd不为空,按“,”切分,获取gpu数量
        else:
            logging.warning("CUDA_VISIBLE_DEVICES is not set.")
            try:
                p = subprocess.run(
                    ["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
                )
            except (subprocess.CalledProcessError, FileNotFoundError):
                ngpu = 0
#警告GPU没设置
            else:
                ngpu = len(p.stderr.decode().split("\n")) - 1
    else:
        if args.ngpu != 1:
            logging.debug(
                "There are some bugs with multi-GPU processing in PyTorch 1.2+"
                + " (see https://github.com/pytorch/pytorch/issues/21108)"
            )
        ngpu = args.ngpu
    logging.info(f"ngpu: {ngpu}")
#如果GPU数量不等于1,提出警告需要pytorch1.2+,
  # display PYTHONPATH
    logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
#python路径
    # set random seed
    logging.info("random seed = %d" % args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)
#设置随机seed,就是避免二次调用的时候产生不同的随机数据集。你再问细一点我也不知道
    # load dictionary for debug log
    if args.dict is not None:
        with open(args.dict, "rb") as f:
            dictionary = f.readlines()
#如果字典不为空,按行读取一行就是长这样“一 2”,
        char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary]
  #前面字符后面数字映射,按空格切分取出字 
char_list.insert(0, "<blank>")
#在索引为0的位置插入<blank>,就是第一个位置插入<blank>
        char_list.append("<eos>")
#在最后的位置插入<eos>
        # for non-autoregressive maskctc model
        if "maskctc" in args.model_module:
            char_list.append("<mask>")
#参考论文:Mask CTC: Non-Autoregressive End-to-End ASR with CTC and Mask Predict
        args.char_list = char_list
#重新将字典赋值给args
    else:
        args.char_list = None

    # train
    logging.info("backend = " + args.backend)

    if args.num_spkrs == 1:
        if args.backend == "chainer":
            from espnet.asr.chainer_backend.asr import train

            train(args)
        elif args.backend == "pytorch":
            from espnet.asr.pytorch_backend.asr import train

            train(args)
        else:
            raise ValueError("Only chainer and pytorch are supported.")
    else:
        # FIXME(kamo): Support --model-module
        if args.backend == "pytorch":
            from espnet.asr.pytorch_backend.asr_mix import train

            train(args)
        else:
            raise ValueError("Only pytorch is supported.")
#训练,详情见https://shimo.im/docs/5xkGMLnEE9cQxp3X
if __name__ == "__main__":
    main(sys.argv[1:])