1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
| #!/usr/bin/env python3 # encoding: utf-8
# Copyright 2017 Tomoki Hayashi (Nagoya University) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Automatic speech recognition model training script."""
import logging import os import random import subprocess import sys
import configargparse import numpy as np
from espnet import __version__ from espnet.utils.cli_utils import strtobool from espnet.utils.training.batchfy import BATCH_COUNT_CHOICES
# NOTE: you need this func to generate our sphinx doc def get_parser(parser=None, required=True): """Get default arguments.""" if parser is None: parser = configargparse.ArgumentParser( description="Train an automatic speech recognition (ASR) model on one CPU, " "one or multiple GPUs", config_file_parser_class=configargparse.YAMLConfigFileParser, formatter_class=configargparse.ArgumentDefaultsHelpFormatter, ) # general configuration parser.add("--config", is_config_file=True, help="config file path") #(config配置文件) parser.add( "--config2", is_config_file=True, help="second config file path that overwrites the settings in `--config`.", ) parser.add( "--config3", is_config_file=True, help="third config file path that overwrites the settings in " "`--config` and `--config2`.", )
parser.add_argument( "--ngpu", default=None, type=int, help="Number of GPUs. If not given, use all visible devices", ) #gpu使用数量 parser.add_argument( "--train-dtype", default="float32", choices=["float16", "float32", "float64", "O0", "O1", "O2", "O3"], help="Data type for training (only pytorch backend). " "O0,O1,.. flags require apex. " "See https://nvidia.github.io/apex/amp.html#opt-levels", ) #训练数据类型 parser.add_argument( "--backend", default="chainer", type=str, choices=["chainer", "pytorch"], help="Backend library", ) #指定训练框架,pytorch或者chainer parser.add_argument( "--outdir", type=str, required=required, help="Output directory" ) #输出目录的文件夹 parser.add_argument("--debugmode", default=1, type=int, help="Debugmode") #debugmode的数量 parser.add_argument("--dict", required=required, help="Dictionary") #字典 parser.add_argument("--seed", default=1, type=int, help="Random seed") #随机速度(不知道什么意思) parser.add_argument("--debugdir", type=str, help="Output directory for debugging") #debug的输出目录 parser.add_argument( "--resume", "-r", default="", nargs="?", help="Resume the training from snapshot", ) #从指定的已训练好的模型继续训练 parser.add_argument( "--minibatches", "-N", type=int, default="-1", help="Process only N minibatches (for debug)", ) #小批量训练,详细可以百度 parser.add_argument("--verbose", "-V", default=0, type=int, help="Verbose option") #日志选项 parser.add_argument( "--tensorboard-dir", default=None, type=str, nargs="?", help="Tensorboard log dir path", ) #Tensorboard日志目录存放路径,可以学一学 parser.add_argument( "--report-interval-iters", default=100, type=int, help="Report interval iterations", ) #迭代多少次输出一次,默认100 parser.add_argument( "--save-interval-iters", default=0, type=int, help="Save snapshot interval iterations", ) #保存模型训练的初始迭代 # task related parser.add_argument( "--train-json", type=str, default=None, help="Filename of train label data (json)", ) #训练数据类型-jaon parser.add_argument( "--valid-json", type=str, default=None, help="Filename of validation label data (json)", ) #验证集数据类型-jaon # network architecture parser.add_argument( "--model-module", type=str, default=None, help="model defined module (default: espnet.nets.xxx_backend.e2e_asr:E2E)", ) #模型定义模块,用pytorch的还是chainer的 # encoder parser.add_argument( "--num-encs", default=1, type=int, help="Number of encoders in the model." ) #模型的编码器数量 # loss related parser.add_argument( "--ctc_type", default="warpctc", type=str, choices=["builtin", "warpctc", "gtnctc", "cudnnctc"], help="Type of CTC implementation to calculate loss.", ) #计算CTC的损失是用什么模型实现的,我用的是warpctc parser.add_argument( "--mtlalpha", default=0.5, type=float, help="Multitask learning coefficient, " "alpha: alpha*ctc_loss + (1-alpha)*att_loss ", ) #多任务学习系数,公式为上面那个 parser.add_argument( "--lsm-weight", default=0.0, type=float, help="Label smoothing weight" ) #标签平滑权重 # recognition options to compute CER/WER parser.add_argument( "--report-cer", default=False, action="store_true", help="Compute CER on development set", ) #计算验证集的字错误 parser.add_argument( "--report-wer", default=False, action="store_true", help="Compute WER on development set", ) #计算验证集的词错误率 parser.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses") #输出几个最好的假设,默认为1 parser.add_argument("--beam-size", type=int, default=4, help="Beam size") #beam search默认设为4 parser.add_argument("--penalty", default=0.0, type=float, help="Incertion penalty") #插入惩罚参数,默认为0 parser.add_argument( "--maxlenratio", default=0.0, type=float, help="""Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths""", #输出目标句子最长和句子的最大比,详细看论文混合CTC/attention ) parser.add_argument( "--minlenratio", default=0.0, type=float, help="Input length ratio to obtain min output length", ) #同上 parser.add_argument( "--ctc-weight", default=0.3, type=float, help="CTC weight in joint decoding" ) #CTC在联合解码中的权重占比,默认为0.3 parser.add_argument( "--rnnlm", type=str, default=None, help="RNNLM model file to read" ) #RNN语言模型要读取的文件 parser.add_argument( "--rnnlm-conf", type=str, default=None, help="RNNLM model config file to read" ) #RNN语言模型默认配置 parser.add_argument("--lm-weight", default=0.1, type=float, help="RNNLM weight.") #RNN语言模型在解码中的占比权重 parser.add_argument("--sym-space", default="<space>", type=str, help="Space symbol") #空格符号用<space>代替 parser.add_argument("--sym-blank", default="<blank>", type=str, help="Blank symbol") #空白符号用<blank>符号代替 # minibatch related parser.add_argument( "--sortagrad", default=0, type=int, nargs="?", help="How many epochs to use sortagrad for. 0 = deactivated, -1 = all epochs", ) #minibatch相关,多少次epochs遍历完一次 parser.add_argument( "--batch-count", default="auto", choices=BATCH_COUNT_CHOICES, help="How to count batch_size. " "The default (auto) will find how to count by args.", ) #batchsize大小 parser.add_argument( "--batch-size", "--batch-seqs", "-b", default=0, type=int, help="Maximum seqs in a minibatch (0 to disable)", ) # parser.add_argument( "--batch-bins", default=0, type=int, help="Maximum bins in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-in", default=0, type=int, help="Maximum input frames in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-out", default=0, type=int, help="Maximum output frames in a minibatch (0 to disable)", ) parser.add_argument( "--batch-frames-inout", default=0, type=int, help="Maximum input+output frames in a minibatch (0 to disable)", ) parser.add_argument( "--maxlen-in", "--batch-seq-maxlen-in", default=800, type=int, metavar="ML", help="When --batch-count=seq, " "batch size is reduced if the input sequence length > ML.", ) parser.add_argument( "--maxlen-out", "--batch-seq-maxlen-out", default=150, type=int, metavar="ML", help="When --batch-count=seq, " "batch size is reduced if the output sequence length > ML", ) parser.add_argument( "--n-iter-processes", default=0, type=int, help="Number of processes of iterator", ) parser.add_argument( "--preprocess-conf", type=str, default=None, nargs="?", help="The configuration file for the pre-processing", ) # optimization related parser.add_argument( "--opt", default="adadelta", type=str, choices=["adadelta", "adam", "noam"], help="Optimizer", ) #优化模型,"adadelta", "adam", "noam"三个选项,默认adadelta parser.add_argument( "--accum-grad", default=1, type=int, help="Number of gradient accumuration" ) #梯度累计次数 parser.add_argument( "--eps", default=1e-8, type=float, help="Epsilon constant for optimizer" ) #优化器的epsilon系数,因为有的鬼地方防止除0,比如BN parser.add_argument( "--eps-decay", default=0.01, type=float, help="Decaying ratio of epsilon" ) #优化器epsilon衰减比率 parser.add_argument( "--weight-decay", default=0.0, type=float, help="Weight decay ratio" ) #权重衰减比率 parser.add_argument( "--criterion", default="acc", type=str, choices=["loss", "loss_eps_decay_only", "acc"], help="Criterion to perform epsilon decay", ) #标准epsilon衰减 parser.add_argument( "--threshold", default=1e-4, type=float, help="Threshold to stop iteration" ) #停止迭代的阈值 parser.add_argument( "--epochs", "-e", default=30, type=int, help="Maximum number of epochs" ) #epochs次数 parser.add_argument( "--early-stop-criterion", default="validation/main/acc", type=str, nargs="?", help="Value to monitor to trigger an early stopping of the training", ) #监控触发停止训练的值 parser.add_argument( "--patience", default=3, type=int, nargs="?", help="Number of epochs to wait without improvement " "before stopping the training", ) #没有再优化模型的epochs的数量,然后提前结束训练 parser.add_argument( "--grad-clip", default=5, type=float, help="Gradient norm threshold to clip" )
parser.add_argument( "--num-save-attention", default=3, type=int, help="Number of samples of attention to be saved", ) #保留注意力样本的数量,可以看result parser.add_argument( "--num-save-ctc", default=3, type=int, help="Number of samples of CTC probability to be saved", ) #要保留ctc概率的数量,也可以看result parser.add_argument( "--grad-noise", type=strtobool, default=False, help="The flag to switch to use noise injection to gradients during training", ) #梯度时加噪 # asr_mix related parser.add_argument( "--num-spkrs", default=1, type=int, choices=[1, 2], help="Number of speakers in the speech.", ) #语音中说话人的数量 # decoder related parser.add_argument( "--context-residual", default=False, type=strtobool, nargs="?", help="The flag to switch to use context vector residual in the decoder network", ) #使用上下文残差 # finetuning related parser.add_argument( "--enc-init", default=None, type=str, help="Pre-trained ASR model to initialize encoder.", ) #预训练语音识别模型的初始化编码器 parser.add_argument( "--enc-init-mods", default="enc.enc.", type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of encoder modules to initialize, separated by a comma.", ) #要初始化的编码器模块 parser.add_argument( "--dec-init", default=None, type=str, help="Pre-trained ASR, MT or LM model to initialize decoder.", ) #预训练语音识别机器翻译和语言模型初始化编码器 parser.add_argument( "--dec-init-mods", default="att.,dec.", type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of decoder modules to initialize, separated by a comma.", ) #初始化编码器模块 parser.add_argument( "--freeze-mods", default=None, type=lambda s: [str(mod) for mod in s.split(",") if s != ""], help="List of modules to freeze, separated by a comma.", ) # front end related parser.add_argument( "--use-frontend", type=strtobool, default=False, help="The flag to switch to use frontend system.", ) #这个标志意味着使用前端系统 # WPE related parser.add_argument( "--use-wpe", type=strtobool, default=False, help="Apply Weighted Prediction Error", ) #应用权重预测误差,作用是去混响 parser.add_argument( "--wtype", default="blstmp", type=str, choices=[ "lstm", "blstm", "lstmp", "blstmp", "vgglstmp", "vggblstmp", "vgglstm", "vggblstm", "gru", "bgru", "grup", "bgrup", "vgggrup", "vggbgrup", "vgggru", "vggbgru", ], help="Type of encoder network architecture " "of the mask estimator for WPE. " "", ) #编码网络类别类别 parser.add_argument("--wlayers", type=int, default=2, help="")#层数 parser.add_argument("--wunits", type=int, default=300, help="")#神经元个数 parser.add_argument("--wprojs", type=int, default=300, help="") parser.add_argument("--wdropout-rate", type=float, default=0.0, help="") parser.add_argument("--wpe-taps", type=int, default=5, help="") parser.add_argument("--wpe-delay", type=int, default=3, help="") parser.add_argument( "--use-dnn-mask-for-wpe", type=strtobool, default=False, help="Use DNN to estimate the power spectrogram. " "This option is experimental.", ) # Beamformer related parser.add_argument("--use-beamformer", type=strtobool, default=True, help="") parser.add_argument( "--btype", default="blstmp", type=str, choices=[ "lstm", "blstm", "lstmp", "blstmp", "vgglstmp", "vggblstmp", "vgglstm", "vggblstm", "gru", "bgru", "grup", "bgrup", "vgggrup", "vggbgrup", "vgggru", "vggbgru", ], help="Type of encoder network architecture " "of the mask estimator for Beamformer.", ) parser.add_argument("--blayers", type=int, default=2, help="") parser.add_argument("--bunits", type=int, default=300, help="") parser.add_argument("--bprojs", type=int, default=300, help="") parser.add_argument("--badim", type=int, default=320, help="") parser.add_argument( "--bnmask", type=int, default=2, help="Number of beamforming masks, " "default is 2 for [speech, noise].", ) parser.add_argument( "--ref-channel", type=int, default=-1, help="The reference channel used for beamformer. " "By default, the channel is estimated by DNN.", ) parser.add_argument("--bdropout-rate", type=float, default=0.0, help="") # Feature transform: Normalization parser.add_argument( "--stats-file", type=str, default=None, help="The stats file for the feature normalization", ) parser.add_argument( "--apply-uttmvn", type=strtobool, default=True, help="Apply utterance level mean " "variance normalization.", ) parser.add_argument("--uttmvn-norm-means", type=strtobool, default=True, help="") parser.add_argument("--uttmvn-norm-vars", type=strtobool, default=False, help="") # Feature transform: Fbank parser.add_argument( "--fbank-fs", type=int, default=16000, help="The sample frequency used for " "the mel-fbank creation.", ) parser.add_argument( "--n-mels", type=int, default=80, help="The number of mel-frequency bins." ) parser.add_argument("--fbank-fmin", type=float, default=0.0, help="") parser.add_argument("--fbank-fmax", type=float, default=None, help="") return parser
def main(cmd_args): """Run the main training function.""" parser = get_parser() #获取参数 args, _ = parser.parse_known_args(cmd_args) #多次传参 if args.backend == "chainer" and args.train_dtype != "float32": raise NotImplementedError( f"chainer backend does not support --train-dtype {args.train_dtype}." "Use --dtype float32." ) #如果选择chainer框架且训练类型不是float32则报错 if args.ngpu == 0 and args.train_dtype in ("O0", "O1", "O2", "O3", "float16"): raise ValueError( f"--train-dtype {args.train_dtype} does not support the CPU backend." ) #如果使用CPU训练且训练类型为O0-O3等报错 from espnet.utils.dynamic_import import dynamic_import #从espnet_utils_dynamic_import.py下引用方法dynamic_import,作用动态引入模块 if args.model_module is None: if args.num_spkrs == 1: model_module = "espnet.nets." + args.backend + "_backend.e2e_asr:E2E" else: model_module = "espnet.nets." + args.backend + "_backend.e2e_asr_mix:E2E" else: model_module = args.model_module model_class = dynamic_import(model_module) #代码注释见https://shimo.im/docs/9030MPWRzYUNZrqw,这里是指e2e_asr_transformer.py中的E2E类 model_class.add_arguments(parser) #将parser参数传给模型,详情见https://shimo.im/docs/vVAXVoDOYNFVVjqm
args = parser.parse_args(cmd_args) args.model_module = model_module if "chainer_backend" in args.model_module: args.backend = "chainer" if "pytorch_backend" in args.model_module: args.backend = "pytorch" #指定框架,这里用的是pytorch
# add version info in args args.version = __version__ #添加版本信息 # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.warning("Skip DEBUG/INFO messages")
# If --ngpu is not given, # 1. if CUDA_VISIBLE_DEVICES is set, all visible devices # 2. if nvidia-smi exists, use all devices # 3. else ngpu=0 if args.ngpu is None: cvd = os.environ.get("CUDA_VISIBLE_DEVICES") #获取能用的GPU if cvd is not None: ngpu = len(cvd.split(",")) #如果cvd不为空,按“,”切分,获取gpu数量 else: logging.warning("CUDA_VISIBLE_DEVICES is not set.") try: p = subprocess.run( ["nvidia-smi", "-L"], stdout=subprocess.PIPE, stderr=subprocess.PIPE ) except (subprocess.CalledProcessError, FileNotFoundError): ngpu = 0 #警告GPU没设置 else: ngpu = len(p.stderr.decode().split("\n")) - 1 else: if args.ngpu != 1: logging.debug( "There are some bugs with multi-GPU processing in PyTorch 1.2+" + " (see https://github.com/pytorch/pytorch/issues/21108)" ) ngpu = args.ngpu logging.info(f"ngpu: {ngpu}") #如果GPU数量不等于1,提出警告需要pytorch1.2+, # display PYTHONPATH logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)")) #python路径 # set random seed logging.info("random seed = %d" % args.seed) random.seed(args.seed) np.random.seed(args.seed) #设置随机seed,就是避免二次调用的时候产生不同的随机数据集。你再问细一点我也不知道 # load dictionary for debug log if args.dict is not None: with open(args.dict, "rb") as f: dictionary = f.readlines() #如果字典不为空,按行读取一行就是长这样“一 2”, char_list = [entry.decode("utf-8").split(" ")[0] for entry in dictionary] #前面字符后面数字映射,按空格切分取出字 char_list.insert(0, "<blank>") #在索引为0的位置插入<blank>,就是第一个位置插入<blank> char_list.append("<eos>") #在最后的位置插入<eos> # for non-autoregressive maskctc model if "maskctc" in args.model_module: char_list.append("<mask>") #参考论文:Mask CTC: Non-Autoregressive End-to-End ASR with CTC and Mask Predict args.char_list = char_list #重新将字典赋值给args else: args.char_list = None
# train logging.info("backend = " + args.backend)
if args.num_spkrs == 1: if args.backend == "chainer": from espnet.asr.chainer_backend.asr import train
train(args) elif args.backend == "pytorch": from espnet.asr.pytorch_backend.asr import train
train(args) else: raise ValueError("Only chainer and pytorch are supported.") else: # FIXME(kamo): Support --model-module if args.backend == "pytorch": from espnet.asr.pytorch_backend.asr_mix import train
train(args) else: raise ValueError("Only pytorch is supported.") #训练,详情见https://shimo.im/docs/5xkGMLnEE9cQxp3X if __name__ == "__main__": main(sys.argv[1:])
|